Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725019

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Chitosan , Magnetic Fields , Selenium , Selenium/chemistry , Selenium/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Microbial Sensitivity Tests , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/chemistry , Metal Nanoparticles/chemistry
2.
BMC Ecol Evol ; 24(1): 57, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711016

BACKGROUND: Complex descriptions of new strains of cyanobacteria appear very frequently. The main importance of these descriptions concerns potential new substances that they could synthesise, as well as their different properties as a result of their different ecological niches. The main gene used for these descriptions is 16 S with ITS or whole genome sequencing. Neowestiellopsis persica represents a unique example of the influence of ecology on morphological changes, with almost identical 16 S identity. Although our previously described Neowestiellopsis persica strain A1387 was characterized by 16 S analysis, we used different molecular markers to provide a way to separate strains of this genus that are closely related at the genetic level. MATERIALS AND METHODS: In order to conduct an in-depth study, several molecular markers, namely psbA, rpoC1, nifD, nifH and cpcA were sequenced and studied in Neowestiellopsis persica strain A1387. RESULTS: The results of the phylogenetic analysis, based on cpcA, showed that the studied strain A 1387 falls into a separate clade than N. persica, indicating that this signature sequence could be a useful molecular marker for phylogenetic separation of similar strains isolated in the future. CONCLUSIONS: Analysis of strain A1387 based on gene differences confirmed that it is a Neowestiellopsis strain. The morphological changes observed in the previous study could be due to different ecological and cultivation conditions compared to the type species. At the same time, the sequences obtained have increased our understanding of this species and will help in the future to better identify strains belonging to the genus Neowestiellopsis.


Cyanobacteria , Phylogeny , Cyanobacteria/genetics , Cyanobacteria/classification , Bacterial Proteins/genetics , Genes, Bacterial/genetics
3.
Sci Rep ; 14(1): 9174, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649495

This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.


Food Preservation , Food Storage , Oncorhynchus mykiss , Phycocyanin , Animals , Food Storage/methods , Oncorhynchus mykiss/microbiology , Oncorhynchus mykiss/growth & development , Food Preservation/methods , Phycocyanin/pharmacology , Antioxidants/pharmacology , Plasma Gases/pharmacology , Seafood , Food Packaging/methods
4.
BMC Plant Biol ; 24(1): 59, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38247007

Applying cold discharge plasma can potentially alter plants' germination characteristics by triggering their physiological activities. As a main crop in many countries, soybean was examined in the present study using cultivars such as Arian, Katoul, Saba, Sari, and Williams in a cold argon plasma. This study has been motivated by the importance of plant production worldwide, considering climate change and the increasing needs of human populations for food. This study was performed to inspect the effect of cold plasma treatment on seed germination and the impact of argon plasma on microbial decontamination was investigated on soybeans. Also, the employed cultivars have not been studied until now the radicals generated from argon were detected by optical emission spectrometry (OES), and a collisional radiative model was used to describe electron density. The germination properties, including final germination percentage (FGP), mean germination time (MGT), root length, and electrical conductivity of biomolecules released from the seeds, were investigated after the plasma treatments for 30, 60, 180, 300, and 420 s. The decontamination effect of the plasma on Aspergillus flavus (A.flavus) and Fusarium solani (F.solani) was also examined. The plasma for 60 s induced a maximum FGP change of 23.12 ± 0.34% and a lowest MGT value of 1.40 ± 0.007 days. Moreover, the ultimate root length was 56.12 ± 2.89%, in the seeds treated for 60 s. The plasma exposure, however, failed to yield a significant enhancement in electrical conductivity, even when the discharge duration was extended to 180 s or longer. Therefore, the plasma duration of 180 s was selected for the blotter technique. Both fungi showed successful sterilization; their infectivity inhibition was 67 ± 4 and 65 ± 3.1%, respectively. In general, the cold plasma used for soybeans in the present study preserved their healthy qualities and reduced the degree of fungal contamination.


Glycine max , Plasma Gases , Humans , Argon , Decontamination , Germination , Plasma Gases/pharmacology
5.
Sci Rep ; 14(1): 2470, 2024 01 30.
Article En | MEDLINE | ID: mdl-38291237

Marine cyanobacteria present a significant potential source of new bioactive compounds with vast structural diversity and relevant antimicrobial and antioxidant activities. Phycobiliproteins (PBPs) like phycocyanin (PC), phycoerythrin (PE), and water-soluble cyanobacterial photosynthetic pigments, have exhibited strong pharmacological activities and been used as natural food additives. In this study, phycoerythrin (PE) isolated from a marine strain of cyanobacterium Nostoc sp. Ft salt, was applied for the first time as a natural antimicrobial as well as an antioxidant to increase the shelf life of fresh rainbow trout i.e., (Oncorhynchus mykiss) fillets. Fresh trout fillets were marinated in analytical grade PE (3.9 µg/mL) prepared in citric acid (4 mg/mL), and stored at 4 °C and 8 °C for 21 days. Microbiological analysis, antioxidant activity and organoleptic evaluation of both control and treated fish fillets were then statistically compared. The results demonstrated noticeable (P < 0.05) differences in the microbial counts, antioxidant activity, and organoleptic characteristic values between PE-treated and non-treated groups. In addition, we observed that treating fresh fish fillets with a PE solution leads to a significant increase in shelf life by at least 14 days. Consequently, PE could be an alternative to synthetic chemical additives since it does not contain the potentially dangerous residues of the synthetic chemical additives and is thus healthier to the consumers.


Nostoc , Oncorhynchus mykiss , Phycoerythrin , Animals , Antioxidants/pharmacology , Oncorhynchus mykiss/microbiology , Seafood/analysis
6.
Microb Pathog ; 187: 106500, 2024 Feb.
Article En | MEDLINE | ID: mdl-38104674

Cyanobacteria have been recognized for their advantageous impact on plant growth and development. The application of certain techniques has the potential to enhance various aspects of plant development, including growth, yield, proximate content (such as protein and carbohydrate levels), as well as the ability to withstand abiotic stresses such as herbicide exposure. The current investigation focused on examining the influence of bioactive compounds derived from the cyanobacterium Neowestiellopsis persica strain A1387 on enhancing the antioxidant and anyimicrobial activity of wheat plants in their defense against the plant pathogenic Sunn pest. The findings of the study indicate that the levels of H2O2 and GPx in wheat plants that were infected with aphids were significantly elevated compared to the treatments where aphids and cyanobacteria extract were present. The confirmation of these results was achieved through the utilization of confocal and fluorescent microscope tests, respectively. Furthermore, the findings indicated that the constituents of the cyanobacterial extract augmented the plant's capacity to withstand stress by enhancing its defense mechanisms. In a broader context, the utilization of cyanobacterial extract demonstrated the ability to regulate the generation and impact of oxygen (O2) and hydrogen peroxide (H2O2), while concurrently enhancing the functionality of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzymes within wheat plants. This facilitation enabled the plants to effectively manage oxidative stress. Moreover, the findings of the antibacterial activity assessment conducted on the extract derived from cyanobacteria demonstrated notable susceptibility. The bacteria that exhibited the highest sensitivity to the extract of cyanobacterium Neowestiellopsis persica strain A1387 were staphylococcus aureus and pseudomonas aeruginosa. Conversely, salmonella typhi demonstrated the greatest resistance to the aforementioned extract. The potential impact of cyanobacteria extract on the antioxidative response of wheat plants to sunn pest infestation represents a novel contribution to the existing body of knowledge on the interaction between wheat plants and aphids.


Anti-Infective Agents , Cyanobacteria , Pesticides , Antioxidants/pharmacology , Antioxidants/metabolism , Triticum/microbiology , Pesticides/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Oxygen/metabolism , Cyanobacteria/metabolism , Anti-Infective Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
7.
BMC Biotechnol ; 23(1): 41, 2023 09 27.
Article En | MEDLINE | ID: mdl-37759248

Metal nanoparticles exhibit excellent antifungal abilities and are seen as a good substitute for controlling different kinds of fungi. Of all known taxa, cyanobacteria have received significant consideration as nanobiofactories, as a result of the cellular assimilation of heavy metals from the environment. The cellular bioactive enzymes, polysaccharides and pigments can be used as reducers and coatings during biosynthesis. The probability of the antifungal activity of selenium nanoparticles (SeNPs) to prevent plant fungi that can affect humans was evaluated and a toxic Iranian cyanobacterial strain of Desmonostoc alborizicum was used to study the biotechnology of SeNP synthesis for the first time. Characterization of nanoparticles with a UV-Vis spectrophotometer showed the formation of SeNPs in the range of 271-275 nm with the appearance of an orange color. Morphological examination of nanoparticles with Transmission Electron Microscopy (TEM), revealed the spherical shape of nanoparticles. The results of X-Ray Diffraction (XRD) showed 7 peaks and a hexagonal structure of average crystal size equal to 58.8 nm. The dispersion index of SeNPs was reported as 0.635, which indicated the homogeneity of the nanoparticle droplet size. The zeta potential of the nanoparticles was + 22.7. Fourier-transform infrared spectroscopy (FTIR) analysis exhibited a sharp and intense peak located at the wave number of 404 cm- 1, related to the SeNPs synthesized in this research. The results of the antifungal activity of SeNPs showed among the investigated fungi, Pythium ultimum had the highest resistance to SeNPs (14.66 ± 0.52 µg/ml), while Alternaria alternata showed the highest sensitivity (9.66 ± 0.51 µg/ml) (p < 0.05). To the best of our knowledge this is the first report concerning the characterization and antifungal screening of SeNPs biosynthesized by Iranian cyanobacteria, which could be used as effective candidates in medical applications.


Metal Nanoparticles , Nanoparticles , Selenium , Humans , Selenium/pharmacology , Selenium/chemistry , Antifungal Agents/pharmacology , Iran , Microcystins , Nanoparticles/chemistry , Metal Nanoparticles/chemistry
8.
Curr Microbiol ; 80(1): 49, 2022 Dec 21.
Article En | MEDLINE | ID: mdl-36542171

A qanat or kariz is a slightly sloping underground aqueduct used to transport water from wells or aquifers to the surface for irrigation and drinking supply. A cyanobacterial strain was isolated from a cyanobacterial mat colonizing the wall of a qanat in Golestan province, Gorgan City, Iran. Fragments of 16S rRNA, mcyG, and mcyD genes were amplified and sequenced, as well as the 16S-23S internal transcribed spacer (ITS). After microscopic examination, the isolate was related to a morphotype of Nostoc sensu lato group, with similar characteristics to Desmonostoc. The 16S rRNA phylogenetic analysis placed the isolate into the typical cluster of the recently proposed genus Desmonostoc. Morphological analysis revealed distinctive characteristic and secondary 16S-23S rRNA structures derived from comparative analysis, which did not match known species of Desmonostoc. These results lead us to propose a novel Desmonostoc species, Desmonostoc alborizicum, which was described and compared with similar taxa. Furthermore, for the first time a potentially toxic species of Desmonostoc was isolated from a water supply, since the mcyD and mcyG genes of the microcystin synthetase (mcy) cluster were successfully sequenced. Using mass spectrometry, detectable amounts of the hepatotoxin microcystin-LR and -RR, along with demethylated variants, were present in cell extracts of the Desmonostoc strain. Our findings contribute to a deeper understanding of the diversity, systematics, and occurrence of the genus Desmonostoc.


Nostoc , Water , RNA, Ribosomal, 16S/genetics , Microcystins/genetics , Phylogeny , Iran , Water Supply , Sequence Analysis, DNA
9.
Mini Rev Med Chem ; 22(20): 2596-2607, 2022.
Article En | MEDLINE | ID: mdl-35507745

Humans have used algae for hundreds of years to make various products viz. agar, fertilizer, food, and pigments. Algae are also used in bioremediation to clean up polluted water and as essential laboratory tools in genomics, proteomics, and other research applications such as environmental warnings. Several special features of algae, including the oxygenic photosynthesis, higher yield in biomass, growth on the non-arable lands, their survival in a wide range of water supplies (contaminated or filtered waters), the production of necessary byproducts and biofuels, the enhancement of soil productivity, and the greenhouse gas emissions, etc. altogether rendered them as vital bio-resources in the sustainable development. Algae and bacteria have been assumed to coexist from the early stages of the development of the earth, and a wide variety of interactions were observed between them which have influenced the ecosystems ranging from the oceans to the lichens. Research has shown that bacteria and algae interact synergistically, especially roseobacter- algae interactions being the most common. These interactions are common to all ecosystems and characterize their primary efficiency. The commercialization of algae for industrial purposes, an important field, is also influenced by this interaction which frequently results in bacterial infections among the consumers. However, the recent findings have revealed that the bacteria improve algal growth and support flocculation which are very crucial in algal biotechnology. Some of the most exciting advancements in the area of algal biotic interactions and potential difficulties were reviewed in this article. Information gleaned in this study would provide a firm foundation for launching more contemporaneous research efforts in understanding and utilizing the algal species in biotechnology industries and medical sectors.


Biofuels , Greenhouse Gases , Agar , Bacteria , Ecosystem , Fertilizers , Humans , Soil
10.
BMC Microbiol ; 22(1): 107, 2022 04 18.
Article En | MEDLINE | ID: mdl-35436846

BACKGROUND: In the present research, challenges arose when many reports have been published on the poisoning of humans due to the ingestion of crops of Crataegus plants contaminated with cyanobacterial toxins. The discovery of several poisonings around agricultural zones prompted us to study the toxic compounds in a strain of Neowestiellopsis which is the most abundant in the agricultural zones of Kermanshah province of Iran, using a polyphasic approach. Molecular procedure was followed to study these strains deeply. MATERIAL AND METHODS: To elucidate their systematic position, besides the 16S rRNA gene, the analyses of molecular toxicity markers, namely nos, mcy G, mcy D and internal transcribed spacer (ITS), were also used. RESULTS: Based on the results, for the first time, we record the presence of a gene cluster coding for the biosynthesis of a bioactive compound (Nostopeptolides) that is very rare in this family and the presence of toxic compounds (microcystin), which might account for the poisoning of humans. CONCLUSIONS: This case is the first observation of a toxic soil strain from the genus Neowestiellopsis from agricultural fields in Iran.


Cyanobacteria , Soil , Cyanobacteria/genetics , DNA, Bacterial/genetics , Humans , Iran , Microcystins/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
BMC Microbiol ; 22(1): 58, 2022 02 17.
Article En | MEDLINE | ID: mdl-35176992

BACKGROUND: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. METHODS: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported. RESULT: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 µg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II) > Cu (II) > Cr (III) from the metal-binding experiments.Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC-MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. CONCLUSION: The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants.


Autotrophic Processes , Biodegradation, Environmental , Metals, Heavy/metabolism , Nostoc/metabolism , Copper/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Nostoc/classification , Organic Chemicals/metabolism
12.
Mini Rev Med Chem ; 22(8): 1131-1151, 2022.
Article En | MEDLINE | ID: mdl-34720080

Different biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in vitro and in vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.


Cyanobacteria Toxins , Cyanobacteria , Animals , Biological Assay/methods , Cyanobacteria/metabolism , Cyanobacteria Toxins/toxicity , Mice , Microcystins/toxicity
13.
J Biomol Struct Dyn ; 40(16): 7629-7644, 2022 10.
Article En | MEDLINE | ID: mdl-33749496

The recent Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), positive-sense RNA viruses, originated from Wuhan City in December 2019 and propagated widely globally. Hence, the disease caused by this virus has been declared as a global pandemic by the WHO. As of 18th February 2021, at least seven different vaccines across three platforms have been rolled out in countries and more than 200 additional vaccine candidates have been in development, of which more than 60 are at the stage of the clinical development. So far, Most of the approved vaccine manufacturers are Pfizer, AstraZeneca, and Serum Institute of India, which have been finalized by WHO. Synthetic drug-associated complications have evoked scientific attention for natural product-based drugs. There has been a surge in the antiviral compounds from natural resources along with some therapies. Cyanobacteria are the fruitful reservoir of many metabolites like sulfated polysaccharides and lectins that possess strong antiviral activities and immunity boosting effects. However, the research in this field has been relatively under-developed. The current research highlights important features of cyanobacterial antiviral biomaterials, benefits and drawbacks of cyanobacterial drugs, challenges, future perspectives as well as overview of drugs against COVID-19. In addition, we have described mutated variants and transmission rate of coronaviruses. The current research suggests that cyanobacterial species and their extracts have promising applications as potentially antiviral drug biomaterials against COVID-19. Communicated by Ramaswamy H. Sarma.


Biological Products , COVID-19 Drug Treatment , Cyanobacteria , Vaccines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biocompatible Materials , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , SARS-CoV-2
14.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article En | MEDLINE | ID: mdl-34913427

An aerobic Gram-stain-negative, curved rod-shaped and non-spore-forming bacterial strain (NBU2194T) was isolated from seawater collected in an intertidal zone in Ningbo, Zhejiang Province, PR China. It was motile though a single polar flagellum and grew at 20-42 °C (optimum, 30 °C), in 0-2.0 % NaCl (0 %, w/v) and at pH 5.0-9.0 (pH 6.0-7.0). The sole respiratory quinone was ubiquinone-8. The major cellular fatty acids were C16 : 0, C16 : 1 ω7c and/or C16 : 1 ω6c. The polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid and two unidentified aminophosphoglycolipids. A phylogenetic analysis based on 16S rRNA gene sequences and 65 genomic core genes showed that strain NBU2194T formed a distinct lineage in the family Alteromonadaceae. The genome of strain NBU2194T was 4 913 533 bp with a DNA G+C content of 43.9 mol% and coded 3895 genes, 12 rRNA genes and 47 tRNA genes. The average nucleotide identity, amino acid identity and digital DNA-DNA hybridization values between strain NBU2194T and related species of Alteromonadaceae were below the threshold limit for prokaryotic species delineation. NBU2194T could be distinguished from other genera in the family Alteromonadaceae based on phenotypic, chemotaxonomic and genomic characteristics. On the basis of the polyphasic taxonomic evidence collected in this study, strain NBU2194T is considered to represent a novel genus and species in the family Alteromonadaceae, for which the name Paraneptunicella aestuarii is proposed. The type strain is NBU2194T (=KCTC 82442T=GDMCC 1.2217T).


Alteromonadaceae , Phylogeny , Seawater/microbiology , Alteromonadaceae/classification , Alteromonadaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
Rev Environ Contam Toxicol ; 258: 109-150, 2021.
Article En | MEDLINE | ID: mdl-34622370

Harmful cyanobacterial blooms are increasing and becoming a worldwide concern as many bloom-forming cyanobacterial species can produce toxic metabolites named cyanotoxins. These include microcystins, saxitoxins, anatoxins, nodularins, and cylindrospermopsins, which can adversely affect humans, animals, and the environment. Different methods to assess these classes of compounds in vitro and in vivo include biological, biochemical, molecular, and physicochemical techniques. Furthermore, toxic effects not attributable to known cyanotoxins can be observed when assessing bloom material. In order to determine exposures to cyanotoxins and to monitor compliance with drinking and bathing water guidelines, it is necessary to have reliable and effective methods for the analysis of these compounds. Many relatively simple low-cost methods can be employed to rapidly evaluate the potential hazard. The main objective of this mini-review is to describe the assessment of toxic cyanobacterial samples using in vitro and in vivo bioassays. Newly emerging cyanotoxins, the toxicity of analogs, or the interaction of cyanobacteria and cyanotoxins with other toxicants, among others, still requires bioassay assessment. This review focuses on some biological and biochemical assays (MTT assay, Immunohistochemistry, Micronucleus Assay, Artemia salina assay, Daphnia magna test, Radionuclide recovery, Neutral red cytotoxicity and Comet assay, Enzyme-Linked Immunosorbent Assay (ELISA), Annexin V-FITC assay and Protein Phosphatase Inhibition Assay (PPIA)) for the detection and measurement of cyanotoxins including microcystins, cylindrospermopsins, anatoxin-a, saxitoxins, and nodularins. Although most bioassay analyses often confirm the presence of cyanotoxins at low concentrations, such bioassays can be used to determine whether some strains or blooms of cyanobacteria may produce other, as yet unknown toxic metabolites. This review also aims to identify research needs and data gaps concerning the toxicity assessment of cyanobacteria.


Cyanobacteria , Microcystins , Animals , Humans , Microcystins/toxicity , Saxitoxin , Uracil
16.
Article En | MEDLINE | ID: mdl-34097598

In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S-23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus, but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92 % similarity to C. cavernicola. The D1-D1', Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).


Cyanobacteria/classification , Fresh Water/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , Bayes Theorem , Cyanobacteria/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Iran , Oryza , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Mini Rev Med Chem ; 21(11): 1351-1366, 2021.
Article En | MEDLINE | ID: mdl-33213343

BACKGROUND: Nanoparticles (NPs) are a group of particles with at least one dimension ranging from 1 nm to 100 nm in diameter and a surrounding interfacial layer. The NP-protein interactions include covalent and non-covalent bonds. Several dehydrogenase enzymes (e.g., alcohol dehydrogenase, lactate dehydrogenase, alanine dehydrogenase, glutamate dehydrogenase, leucine dehydrogenase, phenylalanine dehydrogenase, and malate dehydrogenase) are used for immobilization by NPs. Also, magnetic NPs and quantum dots are promising model systems for the design of bioanalytical sensors and biological enzyme assemblies. In this overview, we aimed to improve the current knowledge of interactions between dehydrogenase enzymes and NPs and to introduce dehydrogenases with industrial and medical applications. Also, bioconjugation of NPs with dehydrogenase enzymes has broad applications in biocatalysis and nanomedicine in the field of drug discovery. However, studies on the characterization of NP-enzyme complexes show that the anatomy and activity of enzymes are dependent on the chemistry of NP ligands, NP size, and labeling methods. Moreover, the NPprotein conjugates show increased/decreased enzymatic activities, depending on the NP features. CONCLUSION: In this study, we reviewed the findings related to NP-enzyme interactions for nanotechnology applications and conjugation techniques. We also highlighted several challenges associated with the NP-enzyme interactions, including the stability and reusability of enzymes in NP-enzyme formation.


Nanoparticles/chemistry , Oxidoreductases/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Fluorescence Resonance Energy Transfer , Humans , Magnetite Nanoparticles/chemistry , Oxidoreductases/chemistry , Quantum Dots/chemistry
18.
Heliyon ; 6(12): e05041, 2020 Dec.
Article En | MEDLINE | ID: mdl-33376816

Pseudomonas aeruginosa is one of the most common reasons for nosocomial infections. Given the high morbidity and mortality, as well as the cost of management, particularly in developing countries, burn injuries are considered important health concerns. Owing to the increased rate of resistance against antibiotics, this study aimed to isolate Pseudomonas aeruginosa strains from burn patient's wounds by analyzing antibiotic susceptibility and genetic profiling. In this regard, we explored the relationship between the nucleotide sequence and antibiotic susceptibility. In this cross-sectional study, 107 isolates of P. aeruginosa were collected from a major burn center in Tehran, Iran. The isolates were characterized with standard biochemical tests and examined by applying the Disk Diffusion method to find the patterns of sensitivity, and their genetic relationship was revealed by RAPD-PCR method. According to the antibiogram results, most of the isolates were resistant to 3 or more antibiotics tested and the most sensitivity was related to the Colistin antibiotic. RAPD-PCR method revealed a high polymorphism among P. aeruginosa isolates in Tehran. There was no significant association between the genotype groups and antibiotic susceptibility profiles. We evaluated the pattern of resistance to pathogenic organisms and identified multi-drug resistant organisms. Currently, Colistin antibiotic is the most suitable treatment option for burned patients. RAPD-PCR is a genotyping method with high efficiency for typing and categorizing different isolates of MDR-P. aeruginosa.

19.
J Appl Toxicol ; 2020 Dec 02.
Article En | MEDLINE | ID: mdl-33289164

Cyanobacteria are well recognised as producers of a wide range of natural compounds that are in turn recognised as toxins that have potential and useful applications in the future as pharmaceutical agents. The order Nostocales, which is largely overlooked in this regard, has become increasingly recognised as a source of toxin producers including Anabaena, Nostoc, Hapalosiphon, Fischerella, Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, Nodularia, Stigonema, Calothrix, Cylindrospermum and Desmonostoc species. The toxin compounds (i.e., microcystins, nodularin, anatoxins, ambiguines, fischerindoles and welwitindolinones) and metabolites are about to have a destructive effect on both inland and aquatic environment aspects. The present review gives an overview of the various toxins that are extracted by the order Nostocales. The current research suggests that these compounds that are produced by cyanobacterial species have promising future considerations as potentially harmful algae and as promising leads for drug discovery.

20.
Iran J Biotechnol ; 17(2): e1853, 2019 Apr.
Article En | MEDLINE | ID: mdl-31457050

BACKGROUND: Cyanobacteria have a worldwide distribution in the terrestrial habitats, occurring predominantly on the surface of the soils, stones, rocks, and trees, practically in moist, neutral or alkaline aeries. The unique natural and bioactive compounds from cyanobacteria with various biological activities and an extensive range of chemical classes have a significant capability for expansion of the pharmaceuticals and other biomedical purposes. OBJECTIVES: Regardless of the progresses in our knowledge on cyanobacteria, however, cyanobacteria are still viewed as an unexplored source of potential drugs. In this study presence of bioactive compounds among the cyanobacteria culture collection of Iran, where a wide variety of strains can be found, was investigated. MATERIAL AND METHODS: We explored one Nostoc strain isolated from rice fields in Golestan province of northern Iran for searching for novel products. The chemical construction of the new bioactive compound was clarified by application of liquid chromatography-mass spectrometer (LC-MS) and Marfey's analysis of the degradation products. RESULTS: We found a novel peptide aldehyde compound from a hydrophilic extract of the Nostoc sp. Bahar_M, which is composed of the three subunits, 2-hydroxy-4-(4-hydroxyphenyl) butanoic acid (Hhpba), L-Ile, and L-argininal. According to the structural information, we predicted that the novel peptide-aldehyde compound probably to be trypsin inhibitors. CONCLUSIONS: Results demonstrated that terrestrial cyanobacteria are a promissing resource of bioactive natural products.

...